MirZnaet.ru

Лучшее из переведенного

Разработка трех процессных модулей для кластерного оборудования на основе универсального масштабированного источника плазмы. просмотров: 1452

 


 



Content of  pdf file


 


1. Project name


Development of the thee process modules for cluster tool on the basis of the universal scaled source of plasma


2. Project purpose


For the costs reduction on development and manufacturing of new generation of the special technological equipment (STE) the scientists and manufacturing engineers relay on the next innovate approaches [1,2]:


- the equipment should be cluster conception, containing universal loadlock chambers for  the load-unload of substrates and process modules, matched  to the universal transport module, with combined vacuum and control systems;


- quantity of the process modules should correspond to the number of the operations, required for forming of the completed system or a node of a microcircuit or device, for example systems of metallization or node of shutters of MOS transistor;


 - a typical process module, co-called reactor, consists of the plasma source processing,


(chemical, electrochemical, thermal, photonic, ion or plasma) substrate holder unit on which substrate is fixed and processed, and the chambers, usually of the cylindrical form, on which the plasma source and substrate holder unit are mounted and also can contain elements for improvement of uniformity of processing substrate;


           -  the source (system) of plasma processing should possess a maximum efficiency of energy use, i.e.to expend a minimum quantity of energy and energy carriers for processing of one wafer.


It is obvious, that the more technological operations can be carried out by the plasma source of processing, that the easier it can be scaled for processing of larger substrates, and then less it will consume the energy on processing, then cheaper will be cost price of   development and production of new generation STE.


At the present time all the leading companies for manufacturing of  industrial equipment are running research and development of the universal (providing a realization of the maximum possible set of the technological operations), scaled up to the 450 mm in the diameter of substrate and energy saving sources for chemical, electrochemical, thermal, photonic, ion and plasma processing. In particular development of sources for vacuum ion-plasma processing of substrates of diameter up to 450 mm on the basis of systems with plasma generation of high density (HDP) (high density plasma - HDP) is leading by the companies such as Applied Materials, Hitachi, TEL and Mattson [3,4].


At the present time the industrial cluster equipments consisting of the cluster chamber, where is loading chamber installed and the set of process modules, realizing the process  of ion plasma processing on the substrate with diameter 200 mm and 300 mm, (sequentially in each of them, without braking in vacuum and subsequently excluding the contact of items with atmosphere) are the basis of the advanced country of the World[1-2].


The cost of modern cluster equipment with (3-5) process modules amounts to 3,0-4,5 USD million, at that the value of modules amount to usually (70-90) % from the value of installation. Development of the same modules provided with special «tool» for items processing (chemical, electrochemical, thermal, photonic, ion or plasma etc.) is the more science-and-cost based field in the development of cluster equipment.


At present time, in Russia, there's no domestic industrial  cluster equipment for realization of the vacuum plasma-ion processing of materials and functional layers, in particular for manufacturing of the  integral circuits (IC),that contributes of its chronic delay in the field of nanotechnology. For improving of the situation «ESTO-Vacuum», LLC which is the leading manufacturer


of industrial vacuum equipment for the processes of ion plasma processing of materials for microelectronic and another manufacturing field of production planned to proceed to developing and industrial production of the domestic cluster tool.


          Based on the result of the investment agreement, «ROSNANO», JSC contributed to registered capital of the «ESTO-Vacuum», LLC company about 200 million RUB, for company’s development: increase in out-put of production, abstention of the production areas, infrastructure development and partial  within extension of production for development of new models of the industrial equipment for vacuum ion-plasma processing.


         In view of the substantial volume of the financial expenses for creation of the pilot sample of the modern domestic cluster equipment has been decided within a framework of «ESTO-Vacuum», LLC company using a raising founds «ROSNANO»,to work out transport and loading module, firmware for all installation and charring of pilot sample of the cluster installation to production chain as for development, preparation, research of the test and evaluation work and  commercialization of the tree process modules on the basis of the patented plasma source for installation to work out  on the terms of co- finances by the innovation centre «SKOLKOVO».


         For this purpose «ESTO-Vacuum», LLC company created a subsidiary company «PPT», LLC to which is planning to convey all patents and another intellectual property on universal scaled source of plasma after receiving the pattern of the innovation center Skolkovo.


    


 


Within a project Skolkovo with innovation center «Skolkovo», «PPT», LLC in planning to carry out a works as following:


a)      Development of module and carrying out the mathematic simulation of construction of plasma source for processing of substrates of diameter 200 mm with  inequality no more then ±5 %.


b)      Development, production work, research, test and evaluation work and  commercialization of the tree process modules on the basis of the universal plasma source realizing the process of vacuum ion-plasma processing as following:


- Process module №1- technological process of spattering of coatings and functional layer on substrates by means of ionic sputtering of targets.


-  Process module №2 -  technological process of high resolution (anisotropic) etching of non-organic functional layers and organic masking coverings on substrates.


-  Process module №3 - technological process of removal of organic masking covering and cleaning of subtract surface.


Non-uniformity of ±5 % on diameter (surface) of substrates meets market requirements for the vacuum ion plasma processing for 99 %. Just only 1% requirements of Word market is banded with preparation fine-geometry masks and mirror for X-ray optics, requires non-uniformity processing no more then ±1 % on surface of substrate The equipment cost, providing with non-uniformity of processing no more then ±1 % on surface of substrate is higher in (1,8-2,0) times  then equipment with non-uniformity no more then ±5 %   .


    c)   Software-based, vacuum and mechanical link-up if worked-out modules with transport         


         chamber of the pilot sample of cluster tool, produced within the project between                 


        «ROSNANO»,JSC and «ESTO-Vacuum», LLC company and realization it as a part of 


         pointed technological process of vacuum ion-plasma processing of layers of diameter 


   200  mm and non-uniformity no more then ±5 %.


 


d)Organization of revise  and improvement of model, mathematic simulation, development 


   and preparation of experimental scaled pattern of  diameter processing up to 450 mm of  


   plasma source, realization of research and test operations at the test-bed for the purpose of


   revelation of its possibility for improvement with inequality  ±5 %.


 


3. A substantiation of project execution 


 


            Industrial cluster equipment, realizing the ion-plasma processing on the substrates (wafers) of diameter 200 mm and 300 mm is the basis of nanotechnology in the field of production of the main items of microelectronics, micro-electromechanical system, photo and optoelectronics, quantum and molecular electronics in the lead country of the world[1,2].


           The analyses of vacuum of ion-plasma market (STE) and running the technologic processes [5] hasshown:



  • At present time, in Russia there is no domestic industrial cluster equipment  for realization of the ion-plasma processing materials and functional layers of IC (integral circuit);

  • Russian leading enterprises in the field of  microelectronic work on the layers of the diameter (150-200 mm and has been required the non-uniformity of proсessing no more then  ±5 % to diameter surface of layer;

  • «ESTO-Vacuum», LLC company issues 30% of volume the industrial STE in the basis of the autonomous single-chamber installation for vacuum ion-plasma processing;

  • «ESTO-Vacuum», LLC company possesses the domestic, patented in the leading country of the world, universal and energy-saving source of plasma. On the basis of it the company produces autonomous single-chamber and load-lock installation of etching, clearing and spattering of the functional layers «Caroline PE12»б «Caroline PE 15» and «Caroline PECVD12» [6,8].


        Carried out laboratory tests of the patented source of plasma  «ESTO-Vacuum», LLC company [9] on the basis of flat high-frequency (HF) system with transformer banded  plasma (TBP) (see the table)  have shown [9] that by the parameter energy efficiency i.e.  in degree of conversion the submit capacity in using for pressing the layers the ion current exceeds in (3,0-4,0) times the all well-known historical materials and domestic HF system (sources) generation  of high density.


     Therefore, developed cluster tool with three process modules (work chamber) on the basis of the universal, scaled and energy-saving source of plasma of high density plasma of high density (HDP) for realization technological processes of vacuum ion-plasma spattering, etching and cleaning will be competitive  on world market of the special technological equipments, and will have the wide field of distribution in Russia, where there is no such equipment  and in the short  run will be competitive  abroad.


 


 


 


 


 


References


1. Handbook of Semiconductor Manufacturing Technology / edited by Y. Nishi and R. Doering, Marcell Dekker Inc., N.Y., USA, Second Edition, 2008. - 1722 pp.


2. Kireev V. Introduction to the technology of microelectronics and nanotechnology,  «ЦНИИХМ», 2008. - 432 p.


3. Intel called to cooperate for transition to 450-mm wafers. - http://www.findsoft.ru/articl_text.php?vidd=18836&clase=1&subclase=16.


4. Yang Y., Kushner V.J. 450 mm dual frequency capacitive coupled plasma sources: conventional graded and segmented electrodes. - J. Appl. Phys. 108, 11, 3306 (2010).


            5. Marketing research «the Market of services and equipment for deposition of PVD and CVD coatings», «RUSNANO», JSC.


6. Website «ESTO-Vacuum», LLC company: www.esto-vacuum.ru


7.  The patent of the Russian Federation № 2171555 from the 6th of March, 2000


8.  The patent of the Russian Federation № 2285742 from the 27th of July, 2004


9.  E.Berlin, V.Kireev, D.Chelapkin. The special process equipment for manufacturing of microcircuits. Criteria of efficiency and competitiveness. - Electronics NTB, 2011, №6, p. 94 - 103.


          10. E. Berlin,S. Dvinin, N. Morozovsky at al. Reactive etching ion-plasma etching and deposition. Installation «Caroline 15» - SRL (science and research library), 2003, №2, p. 54-56.            


          11. T. Uchida, S. Hamaguchi. Magnetic neutral loop discharge (NDL) plasmas for surface processing. - J. Phys. D: Appl. Phys., 2008, v.41, p. 3001 - 3022.


         12. T. Gans, D.L. Crintea, D. O’Connell. A planar inductively coupled radio-frequency magnetic neutral loop discharge. - J. Phys. D: Appl. Phys., 2007, v.40, p. 4508 - 4514.


        13. Advertising material «Alcatel MicroMachiningSystems - AMMS» (France) Etching system with flat RF system and TCP.


          14. A. Aanesland, C. Charles, R.W. Boswell et al. Helicon plasma with additional immersed antenna. - J. Phys. D: Appl. Phys., 2004, v.37, p. 1334 - 1341.


…...15. V.M. Slobodjan, V.F. Virko, G.S. Kirichenko, etc. Helicon discharge inducted by the flat antenna along magnetic field. - works of the international seminar «Pulse powerful accelerators and technologies», 2003, Kharkov, Ukraine.


        16. Advertising material «Oxford Instruments Plasma Technology» (Great Britain) etching system with cylindrical RF system and the inductive-coupled plasma.


        17. Shapoval S.U. appliance of ECR-plasma in nanostructure technology.- Reference of the Russian national scientific conference on physics of low-temperature plasma. FNTP-2004, Petrozavodsk 28-30 June 2004, t.2 p. 155-161.


4. Register list of planned work during execution project


 


Carried out laboratory researches of technological capabilities of the source of HDP have shown, that it can be used for realization of the following processes [6,10]:


-  sputtering of various coatings and functional layers;


- cleaning, modification and implantation of various materials for in order to provide required physical and physical and chemical properties;


- high-resolution (with sub- nanometer range) etching and exposure of various materials at photolithography and nanoimprint lithography;


- deep reactive ion etching (RIE) in routes of micro- and nano-devices with three-dimensional integration;


- above listed technological processes can be realized for processing of silicon substrates of various diameters up to 450 mm.


For use of source of plasma in the process modules of the pilot sample of cluster tool is planning to carry out of the following researches:


           - Development of the model and implementation of the model construction of the source  


             of plasma for layers processing in diameter  200mm with non-uniformity no more then ±5 % ;


           - Constructive specialization of the process module №1  under deposition process of


            by means of ion-deposition target, also research and optimization of the


            technological processes of the  sputtering of coating on it and deposition of functional       


            layers on layers of diameter 200 mm with non-uniformity ±5 % ; 


           - Constructive specialization of the process module №2  under of reactive ion etching  


           (RIE) process and also research and optimization technological processes of  a     


            high-resolution (anisotropic) etching of nonorganic functional layers and organic masks 


            coating on the layers of diameter 200 mm with non-uniformity ±5 % ; 


          - Constructive specialization of the process module №3  under removing organic masks          


            processes and cleaning layers, and also research and optimization of technological


            processes    of removing of organic mask coating and cleaning of the layer surface;


          - Carrying out  of the mathematic simulation and technological processes on the test-bed


           of model scaled  of diameter process up to the 450 mm of plasma source for the purpose 


           of reveal possibilities for processing with non-uniformity ±5 %.


 


Carrying out of research and technological tests of the process module №1 for realization of the processes of deposition of functional layers on substrates by the method of ion sputtering of targets includes:


1.1. Measurement of uniformity of parameters of argon plasma near sputtering target by means Langmuir probes.


1.2. Measurement of uniformity of parameters of argon plasma near sputtering target using optical spectrometer.


1.3. Measurement of an ionic current on a target and distributions of its density on a target surface.


1.4. Measurement of speed and uniformity of ion sputtering of a target and research of an influence on them of various operational and design parameters.


1.5. Measurement of speed and uniformity of sputtering material on substrate and research of influence on them of various operational and design parameters.


1.6. Researches of uniformity of a thickness of the depositing films on relief structures with various aspect ratios.


1.7. Researches of structure of the depositing films by a method of ion sputtering of targets.


1.8. Measurement of electro physical and mechanical properties of the depositing films by a method of ion sputtering of targets.


 


 


 


 



 
























































































 


Characteristic


 


Plasma system of


high density



Power applied to plasma system


 Ws, W



            Working pressure of argon in plasma system p, PA


(molecular density


of argon n, sm-3)



Induction of magnetic field applicable to generation of plasma B, HS



Density of electrons ne and иions в ni in plasma, sm-3


(temperature of electrons Te, eV)



Saturation current density on  substrate holder  ji, мА/sm2


(diameter of layers Dw, mm)



Energy efficiency of plasma system on ion current αsi, mА/W



Flat RF system with the transformator-coupled plasma (ТCP) of  «ESTO-Vacuum», LLC company


[7-10]



1000



0,1


(2,4·1013)



10



5∙1011


(5)



25


(150)



4,37



Cylindrical RF system with the inductive-coupled plasma (ICP) and a neutral contour (Japan) [11]



1000



0,2


(4,8·1013)



20



3∙1011


(5)



6,0


(150)



1,05



Flat RF system with the transformator-coupled plasma (ТCP) and a neutral contour (Germany) [12]



1000



0,2


(4,8·1013)



20



3∙1011


(5)



6,0


(150)



1,05



Flat RF system with TCP without magnetic field (France) [13]



2000



0,4


(9,6·1013)



0



1.5∙1011


(5)



2,5


(200)



0,39



RF system on the basis of cylindrical helicon source (USA) [14]



3000



0,4


(9,6·1013)



200



6∙1011


(8)



8,0


(200)



1,24



RF system on the basis of flat helicon source (Ukraine) [15]



1000



0,4


(9,6·1013)



50



3∙1011


(7)



6,0


(150)



1,05



Cylindrical RF system with ICP (Great Britain) [16]


 



1500



0,4


(9,6·1013)



50



3∙1011


(8)



4,0


(200)



1,24



Superhigh frequencies (SHF ) system on electron cyclotron resonance (ECR)[17]



1500



0,2


(4,8·1013)



875



7∙1011


(8)



12


(150)



1,41



Comments to Table:


1. Saturation current density on  substrate holder  determine by ji = [0,52eni(kTe)1/2]/(Mi)1/2, where  e – electronic charge; k –      Boltzmann's constant; Mi – mass ion of argon.


2. Energy efficiency of the feed system determine by αsi = [jiπDw2]/[4Ws]


 


 



 



Carrying out of research and technological tests of the process module №2 for realization of the processes of high-resolution (anisotropic) reactive ion etching (RIE) of non-organic functional layers and organic masking coverings includes:


2.1. Measurement of uniformity of parameters of plasma of working gases nearby substrate holder by means of Langmuir probes.


2.2. Measurement of uniformity of parameters of plasma of working gases nearby substrate holder using optical spectrometer.


2.3. Measurement of an ion current on substrate holder and distribution of its density on the surface of substrate holder.


2.4. Measurement of speed, uniformity and selectivity of processes of reactive ion etching of substrate materials, functional layers and organic masking coverings and research of influence on them of various operational and design parameters.


2.5. Measurement of anisotropy of reactive ion etching of microstructures of functional layers and organic masking coverings and research of influence on them of various operational and design parameters.


2.6. Researches of infused deficiency of processes of reactive ion etching of materials of substrates, functional layers and organic masking coverings.


2.7. Researches of change of spectral structure of plasma while etching and removal of functional layers.


2.8. Development of an end-point detection method of the processes of reactive ion etching of functional layers using optical spectroscopy of plasma.


Carrying out of research and technological tests of the process module №3 for realization of the processes of plasma chemical removal of organic masking coverings and substrate surface cleaning include:


3.1. Measurement of uniformity of parameters of plasma of working gases nearby substrate holder by means Langmuir probe.


3.2. Measurement of uniformity of parameters of plasma of working gases nearby substrate holder using optical spectrometer.


3.3. Measurement of an ion current on substrate holder and distribution of its density on a surface of substrate holder.


3.4. Measurement of speed, uniformity and selectivity of processes of plasma chemical removal of organic masking coverings and research of influence on them of various operational and design parameters.


3.5. Researches of deficiency and pollution of the surface of substrates after the plasma chemical cleaning process.


3.6. Researches of changes of spectral structure of plasma in the process of plasma chemical  removal of organic masking coverings.


3.7. Development of an end-point detection method of the processes of plasma chemical removal of organic masking coverings using optical spectroscopy of plasma.


 


 


           Carrying out of research and technological tests of model scaled of diameter processing 450 mm of plasma source includes:


           4.1 Mathematic model of source-nod increasing  of source plasma for realization of layers processing of diameter 450 mm with non-uniformity ±5; 
           4.2  Development and preparation of the model scaled of plasma source  for the processing 450 mm layers;


          4.3 Development and preparation of vacuum tool for its use as  test-bed for model testing scaled of plasma source


          4.5 Installation of the model scaled of plasma source on vacuum chamber of the test-bed, connection and initiation;


         


5. Risks description related to project realization


Risks description related to project realization, subdivided as:


- scientific, technological, production;


- market;


- financialrisks;


In the case of financing of the project stage by the due date  in  required volume, scientific, technological and manufacturing risks will be reduce to minimum. As far as, by now the research and development works and technological testes have already performed   and developed the batch manufacturing of  plasma source samples for layers of diameter 100 mm with non-uniformity ±5. Such sources are defined and operate successfully in tools of etching, cleaning and sputtering of the functional layers «Caroline PE12»б «Caroline PE 15» and «Caroline PECVD12» [6,8] of «ESTO-Vacuum», LLC company.


«RUSNANO»


 


 


 


 The market risks in the case of absence of force-majeure circumstances for Russia and global recession have minimized as well that confirm the analytic researches of market needs in equipment and the processes for vacuum ion-plasma processing which have been investigated by GC «Rosnano» [5].


At present, as far as there are not offerings about multifunctional cluster tools for ion-plasma processing with universal scaled source of plasma on the Russian market of vacuum equipments so and financial risks will be appealingly inconspicuous.


 


 


 


6. The teem of project and allocation of responsibilities


 


Knyazev Sergey Aleksandrovich - project leader, General director of «PPT», LLC/


General project management, organization, control of performance of the scientific, experimental and development projects, reporting on results.


He has great work experience on creation of vacuum technological equipment for electron beam processes, including electron guns with the plasma cathode, equipment for ion-plasma sputtering of the different functional layers, equipment for high vacuum electro-physical processing of laser gyroscopes. Besides, he has research studies in the field of researches of plasma sources of wide electronic and ionic beams, carbon nanostructures and auto emitting devices on their basis. He has got a wide administrative experience on the organization of researches and work collectives.


 


Kireev Valery Yurevich – Doctor of Scientist, head of R & D-part of the project, head of department of the system researches of the LLC «Perspective plasma technologies» («PPT»).


 


His primary target is development of the scientific concept of the project, collection and sum-up of the world experience on project objectives, development of plans of studies and experimental researches, processing and optimization of experimental data,  report preparations, articles in scientific magazines, scientific and technical cooperation with Russian scientific and industrial centers.


The basic field of activity: processes, technology, equipment for gas-plasma and ion-plasma etching, cleaning, processing and deposition of functional layers of microelectronic devices of micron and nanometer sizes. Kireev V. Y. was member of working commission of experts of the Ministry of electronic industry (МЭП) of the USSR on plasma chemical processes and equipment for long-time. He has a wide experience of the organization from «0», conducting and successful finish of the projects on development of the new technological processes and devices of plasma and ion processing of materials.


In 1996 - 2001 under his management the production line (consists of "Applied Materials" equipment) has been technologically certified and successfully started production of the microprocessors with the topological norms of 0.5-0.35 microns (on the territory on NII of System Researches or RAS, situated inside the RNC "Kurchatov Institute").


In 2003 - 2007 Kireev V. Y. as a scientific adviser and executive has participated to the joint international scientific project on creation of the nanostamp, as a base tool of nanoimprint lithography with the topological norms less than 50 nanometers, with two leading international companies: German company “Carl Zeiss SMT” and American “Molecular Imprint Inc.” As a result of successful implementation of the project the nanostamp with the sizes of elements up to 40 nanometers has been made; working conductive test-structures on the wafers also have been made.


Beletsky Vladimir Evgenevich - Chief designer of project, director of division of project planning of «ESTO-Vacuum», LLC company.


Management of development of design documentation, acquisition and manufacturing of the utilities and assemblage of the pilot sample of the cluster tool.


Wide experience of design of equipment for special vacuum processes, development of systems for sputtering and plasma processing to be used as prototypes of process modules of cluster tool.


 


 


Chelapkin Danil Gennadievich – Commercial director of project, General director of «ESTO-Vacuum», LLC company.


The role in project is commercialization of the project products. Communication with the key customers of the equipment, organization of the sales of cluster equipment, organization manufacturing site on PVD and CVD-services  and plasma chemical etching.


Chelapkin D.G. has got a great work experience in participation of international project and its running.


In 2000 he took a part in joint Kazakh-American project on researches developing and commercialization of its results on technique of monitoring of a radiating background on the shelves of potentially-rich gas fields.


In 2005 as a part of a group of experts he took a part in successful joint Russian-Chinese project on building, equipment and starts the operation of the production factory for mass production of microelectronic devices of the company «Angstrem Overseas» in the city of Putjan of province Fudjou.                         


In 2005 with his direct participation the contract with the North-Korean company «Lucas Trading Limited» (Tumangen city) on development, delivery and implementation of the vacuum ion-plasma equipment for deposition of resistive materials for manufacturing of film resistors (special development of LLC "ESTO-VACUUM" - «Caroline D17) has been signed, and in 2009 - the contract with LLC " Topaz " (Donetsk, Ukraine) on delivery and implementation of a sputtering tool («Caroline D12B») has also been signed.


At the present moment the negotiation process with the Institute of Development and Innovations of the University of Applied Science (Dusseldorf, Germany)) is going on. The main purpose of the negotiations is to conclude an agreement on joint researches and researches related to the certification of the ESTO-Vacuum equipment under the European Standards .


 


 


 


 


7.  Intellectual property


There is agreement between «ESTO-Vacuum», LLC and «PPT», LLC about transfer of rights, for pointed patents, free of charge on design source of plasma after receiving by the company«PPT», LLC  the status of              participant of innovation centre «SKOLKOVO».


          The formula of the invention and the scheme of elements on one of constructive options of a plasma source is given below.



  1. The source of plasma including the work chamber, control facilities of gas pressure in


work chamber, generator of  an  alternating voltage of the high frequency, connected by a high-frequency cable with antenna which excites a HF field inner of the work chamber, where antenna is performed as conductive coil which is set inside of work chamber where the space between spiral turns is filled out by dielectric, and coil is separated from the work chamber with dielectric layer, with difference that thickness of d dielectric, having separate antenna from   the work chamber doesn’t  exceed  the volume S, and distance  l     from antenna to the nearest conductive surface of work chamber exceeds the tripled value  В, where S is  the maximum from values  


(Λ, R); R is maximal transverse linear dimension of the conductor from which is made a coil of antenna; B = Λ+d, Λ = c/ω Pe is penetration distance of high frequency of electric field in plasma in operate mode; с – light speed; ωPe = (4πnee2/m)1/2 –is electronic Langmuir frequency of plasma; nе – density of electrons in plasma (sm-3); е, m - charge (4,8х10-10 SGS-electronic system) and mass of an electron (g).



  1. A plasma source according to item 1, differing that the maximum cross-section linear size R of the conductor from which the antenna is executed, and depth of penetration Λ a high-frequency field in plasma in an operating mode are connected by ratio R/2 <Λ>< 2R.

  2. A plasma source on any of sub-item 1 and 2, differing that the high-frequency cable connecting the generator to the antenna, consists of two lengths where the matching unit (interface) is switch on


        4. The plasma source according to item 3, differing that the interface consists of two  condensates,   one of which connects in parallel to incoming end of length of HF cable compounding  a matching unit with generator. Andthesecond one is  switchedbetweenactiveconductorofgivenlengthandactiveconductor  ofcable  lengthofconnectingmatchingunitwithantenna.


          5. A plasma source on any of sub-item 1-4, differing that the antenna is executed in the form of a multiple-start coil.


    


  


  the spiral of the aerial is executed from the conductor, exceeds the maximum cross-section which linear size of R the smaller cross-section linear size r and thickness of d of the dielectric separating the aerial from the working chamber, not less than three times, and the corner ψ between a normal to a surface of the dielectric separating the aerial from the working chamber, and the piece next to a normal connecting the most remote points of section of the conductor from which the aerial spiral is executed,


          6. The plasma source on any of sub-item 1-5, differing that, coil of  is made from conductor with maximal transverse linear dimension R exceeding the less transverse linear dimension r and thickness d dielectric, separating antenna from work chamber, no less then three times and angel  ψ   between       perpendicular to dielectric surface separating antenna from chamber and the nearest to perpendicular length connecting  the more distant points of cutting of conductor from which is made the coil  of antenna doesn't exceed  arctg(r/R).


          7. The difference of source of plasma as in any sub-item 1 - 6 is that, distance D between connected  turn of coil of antenna has been chosen in within limits of  В < D < 4В, where В = Λ + d,Λ – penetration distance of high frequency field in plasma and  d -     thickness of dielectric, separating antenna from working chamber.


          8. The difference of source of plasma as in any sub-item 1 - 7 is that the coil of antenna is made with possibility of adjustment of the helix pitch distance during the saving the common length of coil.


9. The difference of source of plasma as in any sub-item 1 - 8 is that the antenna additionally contains capacitive element as disk which is situated in the center of antenna, with radius not exceeding the penetration distance Λ of high frequency field in plasma.


10. The difference of source of plasma as in any sub-item 1 -9 is that   the working chamber is made partially from metallic and metallic substrate holder   and the additional high frequency generator with regulated output voltage have been input besides, the earth wideness of the additional generator is connected with working camber and output of generator with indicated metallic subtract holder.


11. The difference of source of plasma as in item 10 is that the additional penetration distance which is switched between the additional and metallic  generator substrate holder is entered in it.


 


 


 


 


 



 



 


 


 


 


 


 


 


 


 



 


8. The way of product commercialization (or) technology.


As the result of project execution:


            1. Three processing modules on the basis of patented  source of plasma, realizing processes of vacuum ion-plasma processing  will be  developed, manufactured, researched and tested  technologically. These processes are following:


- Process module №1- technological process of spattering of coatings and functional layer on substrates by means of ionic sputtering of targets.


-  Process module №2 - technological process of high resolution (anisotropic) etching of non-organic functional layers and organic masking coverings on substrates.


-  Process module №3 - technological process of removal of organic masking covering and cleaning of subtract surface.


2. Developed  modules will be link in with transport chamber of the pilot sample  cluster tool mechanically, programmatically and by means of vacuum and produce a pointed technological processes of vacuum ion plasma processing of layers of diameter 200 mm with non-uniformity ±5 %.


3. It will be done mathematic model, developed and manufactured the pattern of the scaled source of plasma for the processing layers  of diameter up to the 450 mm and carried out its technological testes  for the purpose of revelation of  process possibilities with non-uniformity ±5 %.


The commercial effect of the project can be reached as a result of realization of several strategies:



  • sale of patents or "know-how" on a design of a source of plasma and other original nodes of cluster tool;

  • sale of patents on unique and energy-saving technologies of processing using a source of different materials, and, on processes of:

  • deposition of functional layers on substrates by method of ion sputtering of targets;

  • high-resolution (anisotropic) reactive ion etching of non-organic functional layers and exposure of organic masking coverings of modern photolithography and nanoimprint lithography;

  • plasma chemical removal of organic masking coverings and clearing of a surface of substrates;



  • for process of silicon layers of diameter 450 mm;

  • sale of assembled sources of plasma, as spare parts for reactors and equipment with respect of all regulating procedures (reception of patents, permissions, licenses etc.);


      The most perspective way of commercialization of a product of an innovative project, according to the Applicant, consist of manufacturing and selling of specialized cluster tools with process modules (chambers) on the basis of a unique source of plasma for requested processes and products of the Customers.


 


     Besides, at different stages of the innovative project concrete results may be reached. They can be considered as commercial products, for example model of definition of geometry and elements of scaled source of plasma for processing of silicon layers of diameter 450 mm.


 


 


9.  Provisional and financial estimate of project .


Rough estimates on terms and project cost are following:


Total period of implementation of the project – 24 months


Total cost of the project - 149000 rub. in the prices for 01.05.2012.


 


 10. Formal conformity.


Suggested project for consideration, according to author`s opinion, meets all requirements for applicants, according to «the PROVISION ON ASSIGNMENT AND LOSS OF THE STATUS OF THE PARTICIPANT OF THE PROJECT OF CREATION AND ENSURING FUNCTIONING OF THE INNOVATIVE CENTER "SKOLKOVO":


2.5. The project presented by the Competitor, corresponds at least to one of innovative priorities within the Activities specified in the Appendix 1 to the present Statement (further – Innovative priorities);


The project corresponds to item 2.2.7 «deposition, implantation» and item 2.2.9 «Cleaning and surface updating» the list of Innovative priorities in the direction «Nuclear technologies».


The project presented by the Competitor, satisfies to the following criteria (further – Criteria):


2.6.1. A created product and (either) technology and (or) expected result of applied researches possess potential competitive advantages before world analogs;


On the basis of the data provided in the table (see in the text) the developed source of plasma being a basis of our project, in 4 times surpasses world analogs in power efficiency, as became one of the bases of its patenting.


According to Statement of Rospatent «invention subjects for which issue of patents is planned, should possess competitive advantages before world analogs». Patents - operating also are supported in the leading western countries and Japan, it means, objectively possess competitive advantages before world analogs. And, therefore, and the process modules equipped with these sources as will possess such advantages.


2.6.2. The created product and (either) technology and (or) expected result of Applied Researches possesses essential potential of commercialization, at least, on Russian, and in the long term – in the world market;


Offered product of the project – three process modules on the basis of the patented source the plasmas realizing the following processes of vacuum ion-plasma processing:


- Deposition of functional layers  and coverings with demanded electro physical properties on substrates in diameter of 200 mm with non-uniformity on thickness of ± 5 %;


- high-resolution (with resolution in substananometrical area) etching of inorganic functional layers and organic masking coverings on substrates in diameter of 200 mm with non-uniformity of ± 5 %;


- removals of organic masking coverings and cleaning of a surface of substrates in diameter of 200 mm;


Also - the model and mathematical models of the scaled plasma source for processing of plates in diameter to 450 mm with non-uniformity no more ±5 %.


The developed modules are joining programmatically, with vacuum and  mechanically to the transport chamber of a pilot-sample  of cluster tool and can make in its structure the specified technological processes of vacuum ion-plasma processing of substrates in diameter of 200 mm with non-uniformity no more ±5 %.


The developed process modules realized on them technological processes, the scaled source of plasma and pilot-sample of cluster tool on the basis of process modules have no analogs and, certainly, will be in demand, at least in the Russian market, and thanks to unique power efficiency and universality of a plasma source, and also to lower price, in the near future, and in the world market.


2.6.3. The project is theoretically realized and doesn't contradict fundamental scientific principles;


The project is based on real development and has technical support  one of the leader company  in the field of manufacturing  of the vacuum equipment  –«ESTO-Vakuum», JSC and also organizational and financial support of «RUSNANO», JSC.


2.6.4. Key researchers, developers and project managers (further - project Team) possess necessary knowledge and experience for successful implementation of the project and (or) carrying out Applied Researches;


Key members of team possess a wide experience and knowledge in the field of ion-plasma technologies and creation of the vacuum equipment for realization of these technologies.


2.6.5. In Team of the project there is an expert or some experts possessing the international experience in area of researches, development and (or) commercialization of their results.


Chelapkin D. G. and Kireev V. Yu. have serious international experience of commercialization as scientifically - production, and commercial projects. Besides, we attach the letter of group of scientists from Düsseldorf University of Applied Researches in which they express an interest and agree to collaborations.


We hope for that dear experts will estimate an urgency of implementation of this project for the Russian industry in the field of vacuum ion-plasma technologies which will allow enter soon into the international market.


 


ПЕРЕВОД



Содержание pdf файла


 


1. Название проекта.


Разработка трех процессных модулей для кластерного оборудования на основе универсального масштабированного источника плазмы.


2. Цель и задачи проекта.


Для уменьшения затрат на разработку и изготовление нового поколения специального технологического оборудования (СТО), ученые, инженеры и конструкторы базируются на следующих прогрессивных принципах [1,2]:


- оборудование должно быть кластерным, содержащим универсальные камеры загрузки-выгрузки пластин и процессные модули, пристыкованные к универсальному транспортному модулю, с объединенной вакуумной системой и системой управления;


- количество процессных модулей должно соответствовать числу операций, необходимых для формирования законченной системы или узла микросхемы или прибора, например, системы металлизации или узла затворов МОП-транзисторов;


- типичный процессный модуль, часто называемый реактором, состоит из источника обработки (химического, электрохимического, термического, фотонного, ионного или плазменного), узла подложкодержателя, на котором закрепляется и обрабатывается пластина, и камеры, обычно цилиндрической формы, на которой источник обработки и подложкодержатель крепятся, и которая также может содержать элементы для обеспечения равномерности обработки по пластине;


- источник (система) обработки должен обладать максимальной эффективностью использования энергии, т.е. затрачивать минимальное количество энергии и энергоносителей для обработки одной пластины.


Естественно, что чем больше технологических операций может выполнять источник обработки, чем проще он может масштабироваться для обработки все больших пластин, и чем меньше он будет потреблять энергии на процесс обработки, тем дешевле будет разработка и изготовление нового поколения СТО.


В настоящее время все ведущие компании по изготовлению производственного оборудования ведут НИОКР по созданию универсальных (обеспечивающих проведение максимально возможного набора технологических операций), масштабируемых до диаметра пластин 450 мм и энергосберегающих источников для химической, электрохимической, термической, фотонной, ионной и плазменной обработки. В частности разработку источников для вакуумной ионно-плазменной обработки пластин диаметром до 450 мм на базе систем с генерацией плазмы высокой плотности (ПВП) (high density plasma – HDP) ведут компании Applied Materials, Hitachi, TEL и Mattson [3,4].


В настоящее время промышленное кластерное оборудование, состоящее из транспортной камеры, на которой смонтированы загрузочные камеры и набор процессных модулей, реализующих процессы ионно-плазменной обработки на пластинах (подложках) диаметром 200 мм и 300 мм, (последовательно в каждом из них, без развакуумирования и, следовательно, исключая контакт изделий с атмосферой) является основой нанотехнологий в ведущих странах мира [1,2].


Стоимость современного кластерного оборудования с (3 – 5) процессными модулями составляет 3,0 – 4,5 млн. долларов США, причем, стоимость модулей составляет, обычно 70-90% от стоимости установки. Разработка же таких модулей, снабженных специальными «инструментами» для обработки изделий (химической, электрохимической, термической, фотонной, ионной или плазменной и др.) является наиболее наукоемкой и затратной областью в разработке кластерного оборудования.


В настоящее время Россия не производит промышленное кластерное оборудование для реализации процессов ионно-плазменной обработки материалов и функциональных слоев, в частности, для производства интегральных микросхем (ИМС), что способствует ее хроническому отставанию в области нанотехнологий. Для исправления ситуации, компания «ЭСТО-Вакуум», которая является одним из ведущих производителей  промышленного вакуумного оборудования для процессов ионно-плазменной обработки  материалов для микроэлектроники и других областей производства, запланировала приступить к разработке и промышленному производству отечественного кластерного оборудования.


По результатам инвестиционного соглашения, ОАО «РОСНАНО» внесло в уставный фонд компании ООО «ЭСТО-Вакуум» около 200 млн. рублей, на развитие компании: увеличение производства оборудования, расширение производственных площадей, развитие инфраструктуры и, частично, в рамках расширения производства,- на разработку новых моделей промышленного оборудования для вакуумной ионно-плазменной обработки.


Из-за больших объемов финансовых затрат на создание опытно-промышленного образца современного отечественного кластерного оборудования, было решено, в рамках компании «ЭСТО-Вакуум», используя привлеченные средства «РОСНАНО», разработать транспортный и загрузочный модули, аппаратно-программное обеспечение для всей установки и провести подготовку опытно-промышленного образца кластерной установки к серийному производству, а разработку, изготовление, исследования, технологические испытания и коммерциализацию трех процессных модулей для нее на основе запатентованного источника плазмы разработать на условии софинансирования инновационным центром «Сколково».


Для этого компания «ЭСТО-Вакуум» создало дочернее предприятие ООО «ППТ», которому планируется передача всех патентов и другой интеллектуальной собственности на универсальный масштабированный источник плазмы после получения им статуса участника (резидента) инновационного центра «Сколково».


В рамках проекта с инновационным центром «Сколково» ООО «ППТ планирует выполнить следующие работы:


а) Разработка модели и проведение математического моделирования конструкции источника плазмы для обработки подложек (пластин) диаметром 200 мм с неравномерностью не более ±5 %.


б) Разработка, изготовление, исследования, технологические испытания и коммерциализация трех процессных модулей на основе универсального масштабированного источника плазмы, реализующих следующие процессы вакуумной ионно-плазменной обработки:


- процессный модуль №1 - технологические процессы нанесения покрытий и функциональных слоев на подложки с помощью ионного распыления мишеней;


- процессный модуль №2 - технологические процессы высокоразрешающего (анизотропного) травления неорганических функциональных слоев и органических маскирующих покрытий на подложках;


- процессный модуль №3 - технологические процессы удаления органических маскирующих покрытий и очистки поверхности подложек.


в) Программная, вакуумная и механическая стыковка разработанных модулей с транспортной камерой опытно-промышленного образца кластерной установки, изготовленной в рамках проекта между ОАО «РОСНАНО» и компании «ЭСТО-Вакуум», и проведение в ее составе указанных технологических процессов вакуумной ионно-плазменной обработки подложек диаметром 200 мм с неравномерностью не более ±5 %.


Неравномерность обработки не более ±5 % по диаметру (площади) пластины (подложки) удовлетворяет 99 % рыночных запросов на процессы вакуумной ионно-плазменной обработки. Только 1 % потребностей мирового рынка, связанных с изготовлением прецизионных фотошаблонов и зеркал для рентгеновской оптики, требует неравномерности обработки не более ±1 % по площади подложки. Стоимость оборудования, обеспечивающего неравномерность обработки не более ±1 % по площади подложки, в (1,8 – 2,0) раза выше, чем оборудования с неравномерностью обработки не более ±5 %.


г) Проведение проверки и доработки модели, математическое моделирование, разработка и изготовление макета масштабированного под диаметр обработки до 450 мм источника плазмы, проведение его исследований и испытаний на экспериментальном стенде с целью выявления его возможностей для обработки с неравномерностью ±5 %.


3. Обоснование необходимости выполнения проекта.


Промышленное кластерное оборудование, реализующее процессы ионно-плазменной обработки на пластинах (подложках) диаметром 200 мм и 300 мм, является основой нанотехнологий в области производства основных изделий микроэлектроники, микроэлектромеханических систем, фото и оптоэлектроники, квантовой и молекулярной электроники в ведущих странах мира [1,2].


Анализ рынка вакуумного ионно-плазменного СТО и реализуемых на нем технологических процессов [5], показал:


- в настоящее время в России отсутствует отечественное промышленное кластерное оборудование для реализации процессов ионно-плазменной обработки материалов и функциональных слоев ИМС;


- ведущие в области микроэлектроники российские предприятия работают на пластинах (подложках) диаметром (150 – 200) мм и требуют неравномерности обработки не более ±5 % по диаметру (площади) пластины (подложки);


- 30 % объема промышленного СТО на базе однокамерных автономных установок для вакуумной ионно-плазменной обработки выпускает компания «ЭСТО-Вакуум»;


- отечественным, запатентованным в ведущих странах мира, универсальным и энергосберегающим плазменным источником обладает компания «ЭСТО-Вакуум», которая на его основе выпускает автономные однокамерные и шлюзовые установки травления, очистки и осаждения функциональных слоев «Caroline PE12», «Caroline PE15» и «Caroline PECVD12» [6-8].


Проведенные лабораторные испытания запатентованного плазменного источника компания «ЭСТО-Вакуум» на базе плоской высокочастотной (ВЧ) системы с трансформа

- 0 +    дата: 26 сентября 2013

   Загружено переводчиком: Ирина Викторовна Брезгина Биржа переводов 01
   Язык оригинала: русский    Источник: 11. T. Uchida, S. Hamaguchi. Magnetic neutral loop discharge (NDL) plasmas for surface processing. – J. Phys. D: Appl. Phys., 2008, v.41, p. 3001 – 3022. 12. T. Gans, D.L. Crintea, D. O’Connell. A